A refined large deviation principle for Brownian motion and its application to boundary crossing
نویسندگان
چکیده
منابع مشابه
A Large Deviation Principle for a Brownian Immigration Particle System
We derive a large deviation principle for a Brownian immigration branching particle system, where the immigration is governed by a Poisson randommeasurewith a Lebesgue intensity measure.
متن کاملA Large Deviation Principle for Martingales over Brownian Filtration
In this article we establish a large deviation principle for the family {ν ε : ε ∈ (0, 1)} of distributions of the scaled stochastic processes {P − log √ ε Z t } t≤1 , where (Z t) t∈[0,1] is a square-integrable martingale over Brownian filtration and (P t) t≥0 is the Ornstein-Uhlenbeck semigroup. The rate function is identified as well in terms of the Wiener-Itô chaos decomposition of the termi...
متن کاملBoundary Crossing Identities for Brownian Motion and Some Nonlinear Ode’s
We start by introducing a nonlinear involution operator which maps the space of solutions of Sturm-Liouville equations into the space of solutions of the associated equations which turn out to be nonlinear ordinary differential equations. We study some algebraic and analytical properties of this involution operator as well as some properties of a two-parameter family of operators describing the...
متن کاملA large deviation principle for Dirichlet posteriors
Let Xk be a sequence of independent and identically distributed random variables taking values in a compact metric space Ω, and consider the problem of estimating the law of X1 in a Bayesian framework. A conjugate family of priors for non-parametric Bayesian inference is the Dirichlet process priors popularized by Ferguson. We prove that if the prior distribution is Dirichlet, then the sequence...
متن کاملA large deviation principle for Dirichlet posteriorsA
Let X k be a sequence of independent and identically distributed random variables taking values in a compact metric space , and consider the problem of estimating the law of X 1 in a Bayesian framework. A conjugate family of priors for non-parametric Bayesian inference is the Dirichlet process priors popularized by Ferguson. We prove that if the prior distribution is Dirichlet, then the sequenc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Stochastic Processes and their Applications
سال: 1994
ISSN: 0304-4149
DOI: 10.1016/0304-4149(94)90045-0