A refined large deviation principle for Brownian motion and its application to boundary crossing

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Large Deviation Principle for a Brownian Immigration Particle System

We derive a large deviation principle for a Brownian immigration branching particle system, where the immigration is governed by a Poisson randommeasurewith a Lebesgue intensity measure.

متن کامل

A Large Deviation Principle for Martingales over Brownian Filtration

In this article we establish a large deviation principle for the family {ν ε : ε ∈ (0, 1)} of distributions of the scaled stochastic processes {P − log √ ε Z t } t≤1 , where (Z t) t∈[0,1] is a square-integrable martingale over Brownian filtration and (P t) t≥0 is the Ornstein-Uhlenbeck semigroup. The rate function is identified as well in terms of the Wiener-Itô chaos decomposition of the termi...

متن کامل

Boundary Crossing Identities for Brownian Motion and Some Nonlinear Ode’s

We start by introducing a nonlinear involution operator which maps the space of solutions of Sturm-Liouville equations into the space of solutions of the associated equations which turn out to be nonlinear ordinary differential equations. We study some algebraic and analytical properties of this involution operator as well as some properties of a two-parameter family of operators describing the...

متن کامل

A large deviation principle for Dirichlet posteriors

Let Xk be a sequence of independent and identically distributed random variables taking values in a compact metric space Ω, and consider the problem of estimating the law of X1 in a Bayesian framework. A conjugate family of priors for non-parametric Bayesian inference is the Dirichlet process priors popularized by Ferguson. We prove that if the prior distribution is Dirichlet, then the sequence...

متن کامل

A large deviation principle for Dirichlet posteriorsA

Let X k be a sequence of independent and identically distributed random variables taking values in a compact metric space , and consider the problem of estimating the law of X 1 in a Bayesian framework. A conjugate family of priors for non-parametric Bayesian inference is the Dirichlet process priors popularized by Ferguson. We prove that if the prior distribution is Dirichlet, then the sequenc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Stochastic Processes and their Applications

سال: 1994

ISSN: 0304-4149

DOI: 10.1016/0304-4149(94)90045-0